
L’architecture 3 tiers
(pour référence)

Le présent article décrit l’architecture 3 tiers. Non pas pour en faire la promotion car, à
bien des égards, on peut considérer qu’elle est dépassée. Mais parce que c’est l’une des
premières architectures à s’être répandues dans l’industrie du logiciel de gestion, dans
les années 1990. À ce titre, elle a servit de référence, y compris pour en faisant l’objet
de critiques, quand il s’est agit de mettre au point d’autres architectures (notamment
pour lui succéder).

Je la classe dans les architectures impures pour ce qui est de la gestion des
dépendances qu’elle implique.

1. Objectif

L’objectif premier de l’architecture 3 tiers est, à défaut de doter le logiciel à développer
d’une architecture optimale, de le doter d’une architecture tout court.

L’architecture 3 tiers s’est apparue dans les années 1990, à la jonction entre les
logiciels dits « client / serveur » et l’apparition des premières applications web (alors
rudimentaires, à base de simples formulaires HTML).

L’approche client / serveur à laquelle elle succède peut être qualifiée d’architecture à
deux niveaux : le client d’un côté et le serveur de l’autre. Elle est apparue avec la mise
en place des réseaux d’entreprise, permettant à plusieurs postes de travail d’être reliés
et donc d’exploiter et d’alimenter des données dans une même base centralisée.

Cette architecture à deux niveaux préconise donc de réaliser d’une part un logiciel
serveur, qui sera déployé sur le serveur seul et qui s’occupera de gérer les opérations
centralisées, et un logiciel client d’autre part, qui sera déployé sur chacun des postes de
travail des utilisateur·ices du logiciel. Mais elle ne dit rien de la façon d’organiser le code
de chacune de ces deux composantes.

L’architecture 3 tiers va un peu plus loin, en ordonnant un peu plus la façon dont la
partie serveur pourra être organisée.

2. Principe

L’architecture 3 tiers tire son nom du fait qu’elle organise le logiciel en trois couches
distinctes, ayant chacune un domaine de responsabilités :

Une couche présentation, qui a la charge de présenter les données à
l’utilisateur·ice du logiciel, que ce soit à l’écran ou sous d’autres formes de sorties,
comme une imprimante. En plus de ces sorties, elle doit également gérer des
entrées, typiquement des saisies de données par l’utilisateur·ice sur des
formulaires dans le cadre d’applications de gestion.

Cette couche correspond à la partie client de l’approche client / serveur.

λ

•

1

file:///home/yom/inglog/dev/www-devlog/.tmp/purete-dependances
file:///home/yom/inglog/dev/www-devlog/.tmp/client-serveur

Une couche logique métier, qui a la charge d’implémenter les règles de gestion,
propres au(x) métier(s) ciblé(s) par l’application.

Un apport essentiel de cette couche, à l’époque où ce type d’architectures a été
proposé, a été d’inciter les développeur·euses à déporter leur code métier en
dehors des écrans, c’est à dire de la couche présentation. Cela a été
particulièrement important dans le domaine des clients « lourds » (sous forme
d’applications natives plutôt que web).

Les outils de programmation de ces écrans (par exemple des IDE comme Visual
Basic ou Delphi) permettaient en effet d’associer directement à des éléments
d’interface graphique, comme des boutons, des procédures automatiquement
exécutées lors de leur activation. Nombreux étaient les développeur·euses qui
avaient alors tendance à intégrer leur code, y compris métier et souvent même de
persistance, dans ces procédures, ce qui pouvait donner lieu à de nombreuses
occasions manquées de partager du code commun entre différents éléments de
l’application.

Une couche persistance, qui a la charge de récupérer les données et de les
inscrire dans des supports persistants, tels que des bases de données ou
éventuellement des fichiers.

Le principe clé de l’architecture 3 tiers est que les dépendances directes entre
composants logiciels vont de la couche présentation vers la couche logique métier et de
cette dernière vers la couche persistance.

En revanche :

La couche présentation ne peut pas s’adresser directement à la couche
persistance. Elle passe toujours par l’intermédiaire de la couche logique métier.

Il ne saurait y avoir aucune dépendance à rebours du sens présentation → logique
métier → persistance.

Donc pas de dépendance de la couche logique métier vers la couche présentation,
ni de la couche persistance vers la couche métier et évidemment encore moins de
la couche persistance vers la couche présentation.

Une opération de la part de l’utilisateur·ice prendra donc typiquement la forme
suivante :

La couche présentation prend en compte l’action effectuée par l’utilisateur·ice sur
l’interface graphique.

Cela se traduit par une demande qu’elle adresse à la couche logique métier. Cette
demande peut s’accompagner de données (montantes), typiquement passées en
paramètres aux opérations mises à disposition par la couche logique metier.

La couche logique métier prend en compte cette demande, avec les données
passées en paramètres, et y applique ses règles de gestion pour élaborer sa
réponse, typiquement sous forme de nouvelles données (descendantes, cette fois).

•

•

•

•

1.

2.

2

Si cette élaboration nécessite de collecter ou de pousser des données vers un
support persistant, comme une base de données, alors la couche logique métier va
à son tour adresser une demande à la couche persistance, pour y pousser ou
collecter ces données.

La couche persistance va prendre en compte cette demande et retourner les
données qui en résultent.

La couche logique métier va réceptionner ces données et les intégrer dans
l’élaboration de sa réponse.

La couche présentation va enfin réceptionner les données retournées par la couche
logique métier, les mettre en forme et les afficher à l’utilisateur·ice.

NB. - Aucune hypothèse n’est faite a priori sur les formats de communication entre ces
couches. Il peut s’agir d’appels de procédures, locales ou à distance, via la technologie
COM/DCOM dans le monde Microsoft, la technologie RMI dans le monde Java ou la
norme aujourd’hui quasiment disparue CORBA, ou encore de requêtes HTTP…

3. Critiques

L’architecture 3 tiers a eu le mérite, du fait de sa simplicité, de populariser un modèle
d’architecture dans des entreprises qui n’en avaient tout simplement pas auparavant.

Pour filer la traditionnelle métaphore de la cuisine italienne, elle a permis à des logiciels
de prendre la forme d’un plat de lasagne (architecture en couche) au lieu d’un plat de
spaghetti (gros désordre) et de maîtriser un temps soit peu les dépendances entre
composants logiciels et ainsi éviter, ou au moins contenir, le dependency hell que
peuvent devenir des projets logiciels d’une certaine importance.

Mais elle n’est évidemment pas parfaite et on peut lui adresser un certain nombre de
critiques. Parmi lesquelles :

Des ambigüités sur les formats de communication entre couches

Considérons la notion d’entités du domaine.

C’est une notion fondamentale de la conception de base de données. Mais c’est
une notion également directement issu du métier, car c’est bien du domaine
métier qu’il s’agit quand on parle de « domaine ».

S’il s’agit d’entités métier, alors on imagine que leur siège doit être la couche
logique métier. D’autant plus qu’elle pourront donner les classes métier qu’on
utilisera avec des langages orientés objet.

Mais quand sont apparus les ORM (correspondances objet / relationnel), dont le
siège est indiscutablement au niveau de la couche persistence, on a commencé à
se faire des nœuds au cerveau (en supposant que l’on veuille absoluement rester
dans le strict cadre d’une architecture 3 tiers), car les classes d’entités du domaine
devaient désormais également servir de paramètres et de valeurs de retour des
procédures proposées par ces ORM. Or, si le siège naturel des classes entités du
domaine est la couche logique métier, alors celles-ci sont innaccessible à la couche
persistance, car toute dépendance persistance → logique metier est prohibée.

3.

4.

5.

3

Alors que faire ?

Les déplacer de la couche logique métier vers la couche persistance et
compter sur la dépendance logique metier → persistance pour les utiliser dans
ces deux couches ?

Mais, plus tard, avec l’avènement d’échanges en XML, puis en JSON, donc
également (plus ou moins) orientés objets et potentiellement à base de
sérialisations et désérialisation automatiques d’objets natifs, entre la couche
présentation et la couche logique métier, la question se pose à nouveau. Car
la couche présentation n’aura pas accès, pas directement, à la couche
persistance siège de ces entités.

Les dupliquer, en dotant chaque couche en ayant besoin sa propre définition
des mêmes entités du domaine ?

Cela est tout à fait possible, mais va nécessiter du travail supplémentaire :

Pour maintenir en double ou en triple ces différentes entités dans le cas
ou des changements devaient survenir dans leur définition.

Pour convertir (mapper en bon franglais) les entités de la couche
présentation en celles de la couche logique applicative, puis celles de la
couche logique applicative en celles de la couche persistance, puis celles
de la couche persistance en celles de la couche logique applicative à
nouveau et enfin celles de la couche logique applicative en celles de la
couche présentation à nouveau.

Transgresser les règles de l’architecture 3 tiers en isolant ces entités du
domaine dans un composant logiciel distinct qui sera une dépendance
commune aux composants des trois couches ?

L’impureté des dépendances logique métier → persistance

Parmi les trois couches proposées par l’architectures 3 tiers, deux sont
nécessairement destinées à effectuer des opérations d’entrées et de sorties :

La couche présentation va devoir gérer les entrées de données effectuées par
les utilisateur·ices et les sorties faites vers l’écran ou d’autres périphériques
comme des imprimantes.

La couche persistance va devoir gérer les entrées et sorties de données vers
des supports persistants, comme des bases de données ou des fichiers.

Au mileu de ces couches, seules la couche logique métier aurait le potentiel pour
contenir du code pur. C’est à dire, notamment, n’effectuant pas d’opérations
d’entrées et de sorties.

Mais son utilisation de la couche persistance va se traduire par des dépendances
vers des composants impurs. Les composants de la couche logique métier vont
donc se retrouver eux-mêmes impurs par « contamination ».

•

•

◦

◦

•

•

•

4

file:///home/yom/inglog/dev/www-devlog/.tmp/purete-fonctions

	L’architecture 3 tiers
	Objectif
	Principe
	Critiques

