
L’architecture contrôleurs /
services / dépôts

L’architecture contrôleurs / services / dépôts est une architecture utilisée pour la
conception de services web RESTful.

Elle présente de fortes similarités avec l’architecture 3 tiers, du fait qu’elle appelle elle
aussi à une décomposition du logiciel en 3 couches avec des domaines de
responsabilités similaires. De ce fait on peut également la classer parmi les
architectures impures pour ce qui est de la gestion des dépendances.

1. Objectif

L’objectif de l’architecture contrôleurs / services / dépôts est de proposer une
organisation du code pour la création de services web RESTful.

Tout comme l’architecture 3 tiers, dont elle s’inspire fortement, elle demeure simple à
comprendre et à mettre en œuvre.

Mais contrairement à l’architecture 3 tiers, ce n’est pas la totalité de l’ancienne
architecture client / serveur à deux couches qu’elle se propose de redécouper en trois
couches, mais seulement sa couche serveur, en lui faisant prendre la forme de services
web. Si on devait lui ajouter la notion de client, représentée par la couche présentation
dans l’architecture 3 tiers, alors on se retrouverait en fait avec une architecture en non
pas trois, mais quatre couches.

Mais, de fait, l’architecture contrôleurs / services / dépôts laisse de côté la question du
logiciel client pour ne s’intéresser qu’à celle du côté serveur. L’une des raisons à cela
est que, ce côté serveur prenant la forme de services web, on envisage qu’il peut être
utilisé par différents clients qui seront éventuellement développés par d’autres
organisations que celle qui aura à développer ces services web.

Soulignons en outre que cette architecture est une option proposée par des générateurs
de code comme OpenApi Generator. Ce générateur de code permet de générer (avec
plus ou moins de réussite) les classes de base et la documentation Swagger pour des
services web RESTful, dans différents langages (au premier rang desquels le langage
Java, qui est le langage dans lequel est lui-même écrit ce générateur).

Sans en augmenter (ni en diminuer) les mérites, cela tend à installer l’architecture
contrôleurs / services / dépôts comme un classique de la discipline.

2. Principe

L’architecture contrôleurs / services / dépôts, comme son nom et sa parenté avec
l’architecture 3 tiers le laissent supposer, propose d’organiser le code d’un ensemble de
services web autour de trois couches :

λ

1

file:///home/yom/inglog/dev/www-devlog/.tmp/architecture-3-tiers
file:///home/yom/inglog/dev/www-devlog/.tmp/purete-dependances
file:///home/yom/inglog/dev/www-devlog/.tmp/architecture-client-serveur

La couche contrôleurs

Elle correspond à la couche présentation de l’architecture 3 tiers.

Mais contrairement à cette dernière, elle ne consiste pas en un client devant
présenter les données directement à un·e utilisateur·ice humain·e, mais en
l’interface frontale des services web, avec laquelle interagiront des logiciels clients.

Cette interface va typiquement proposer des routes pouvant être appelées en
HTTP(S) avec divers verbes (GET, POST, PUT, DELETE…) proposés par ce protocole
pour réaliser des opérations de collecte, de création, de mise à jour ou de
suppression de données. Ces données seront généralement représentées en JSON,
format qui a l’avantage d’être directement exploitable par le code Javascript des
clients qui prendraient la forme d’applications web.

On appelle généralement DTO (pour Data Transfer Objects) les structures de
données qui sont utilisées pour cette communication avec les logiciels clients. Ils
sont distincts des objets entités utilisés par la couche dépôt.

La couche contrôleur a notamment la charge de vérifier que les pramètres ou les
DTO montants qu’elle aura éventuellement reçus avec la requête HTTP sont au bon
format et font sens par rapport à la demande représentée par la route appelée.

Elle a également la charge de vérifier si la requête est autorisée. Toutes les API web
ne sont en effet pas publiques et leur emploi peut nécessiter autorisation et
authentification.

La couche services

Elle correspond à la couche logique métier de l’architecture 3 tiers.

Comme son analogue, cette couche a pour responsabilité d’appliquer les règles de
gestion métier correspondant au demandes que lui transmet la couche contrôleurs.

Pour cela, elle aura généralement à collecter des données auprès de la couche
dépôts. Ces données lui seront retournées sous la forme d’objets entités, auxquels
elle devra appliquer divers traitements correspondant aux règles de gestion, avant
de les convertir en DTO qu’elle retournera à la couche contrôleurs.

La couche dépôts

Elle correspond à la couche persistance de l’architecture 3 tiers.

Elle se charge donc de collecter des données depuis des supports de stockage
persistants, ou d’y inscrire des données.

Le plus souvent, dans les applications de gestion, ces supports de stockage
persistants seront des base de données exploitées au travers d’ORM (Object-
Relational Mapping) effectuant la correspondance entre des objets du langage
d’implémentation de la couche dépôts et les structures attendues par les systèmes
de gestion de bases de données. Ces objets, dans le langage d’implémetation de la
couche dépots sont des objets entités.

Les dépendances entre ces couches sont très exactement calquées sur celles entre les
couches correspondantes dans l’architecture 3 tiers. On peut toutefois y ajouter les

2

dépendances vers les DTO d’une part et les objets entités d’autre par, pour voir quelle
couche utilise quoi.

Le flux typique du traitement d’une requête est donc le suivant :

La couche contrôleurs accepte des requêtes HTTP, lui transmettant éventuellement
des DTO correspondant à des données montantes. Ces DTO sont alors désérialisés
du JSON vers le langage d’implémentation du serveur.

Si quelque chose se passe mal à ce stade, cela peut donner lieu à une réponse
HTTP précoce qui coupe court à la suite du traitement. Il peut, par exemple, s’agir
d’une réponse de code HTTP 400 (Bad Request), si les données accompagnant la
requête HTTP ne correspondent pas à ce qui est attendu.

Si toutefois la requête est valide et autorisée, la couche contrôleurs fait alors
appelle à la couche services en lui transmettant les éventuelles données
montantes sous forme de DTO désérialisés.

Si elle a besoin de collecter des données pour élaborer sa réponse (ce qui sera
généralement le cas), la couche services va s’adresser à la couche dépôts. Ce sera
également le cas si l’opération demandée consiste en la création ou la modification
de données dans un support de stockage persistant.

Comme la couche dépôts ne parle pas le langage des DTO mais celui des objets
entités, la couche services devra effectuer des conversions des DTO qu’elle aura
reçus de la couche contrôleurs en objets entités qu’elle transmettra à la couche
dépôts.

La couche dépôts s’occupe alors d’effectuer les opérations de persistance
correspondant à la demande, qu’il s’agisse d’opérations de lecture ou d’écriture
vers des supports persistants.

Il s’agit souvent de bases de données qui sont utilisées avec des ORM s’appuyant
sur les objets entités.

S’il y a des données descendantes à transmettre en réponse à la couche services,
typiquement dans le cas d’une demande de collecte de données, alors celles-ci lui
seront transmises sous forme d’objets entités.

La couche services réceptionne donc ces éventuelles entités.

1.

2.

3.

4.

5.

3

Elle peut alors leur appliquer divers traitements pouvant correspondre à
l’application de règles de gestion.

Puis elle devra les convertir en DTO pour les retourner à la couche contrôleurs.

Enfin, la couche dépôts devra sérialiser ces DTO en JSON pour les faire figurer dans
sa réponse HTTP(S) à la requête qu’elle a initialement reçue.

Notons que la séparation entre les trois couches a plus vocation à être logique que
physique. C’est à dire que ces couches prendront généralement la forme d’une
organisation du code (en paquets ou modules séparés) au sein d’un même projet
logiciel plutôt que la forme de composants logiciels distincts.

Il existe cependant des logiciels qui font le choix de séparer ces couches physiquement,
mais cette approche est marginale car elle complexifie considérablement la mise en
œuvre de l’architecture (mais cela permettrait, si besoin était, d’écrire ces couches avec
des langages de programmation différents). Chaque couche prend alors la forme d’un
ensemble de services web communiquant avec les autres en HTTP(S). Dans ce cas,
seule la couche contrôleurs sera constitutive de services web publiés vers l’extérieur de
l’organisation.

3. Critiques

Des conversions parfois fastidieuses

À l’architecture 3 tiers, on adressait une critique concernant des ambigüités sur les
formats de communication entre couches.

Avec l’architecture contrôleurs / services / dépôts, ces ambigüités sont levées : la
couche contrôleurs parle le langage des DTO, la couche dépôts celui des objets
entités et la couche services assure la traduction entre les deux.

Il peut arriver qu’il y ait de petites différences marginales entre les structures des
DTO et celles des objets entités. Mais dans l’ensemble elles sont généralement
tout de même extrêmement similaires.

Aussi, lorsqu’on écrit du code dans le cadre d’un projet ayant adopté l’architecture
contrôleurs / services / dépôts, on a souvent l’impression de faire de la quasi
duplication de code et de passer beaucoup de temps à transvaser des données des
DTO vers des entités, puis des entités vers des DTO à nouveau ; même si certains
langages de programmation proposent des choses pour automatiser cela au
maximum.

L’impureté des dépendances services → dépôts

Les dépendances entre la couche services et la couche dépôts sont impures
exactement comme le sont, concernant l’architecture 3 tiers, les dépendances
entre la couche logique métier et la couche persistance.

La couche dépôts est intrinsèquement impure, du fait qu’elle va devoir gérer des
opérations d’entrées et de sorties vers des supports de stockage persistants. De ce
fait, toute dépendance vers cette couche va automatiquement contaminer les
composants qui, sans cela, aurait pu avoir l’opportunité de rester purs.

6.

4

	L’architecture contrôleurs / services / dépôts
	Objectif
	Principe
	Critiques

