
Les clés dans les bases de
données relationnelles

1. Les bases théoriques

Les bases de données relationnelles s’appuient sur l’algèbre relationnel.

On y manipule des relations1 (des tables ou des vues), dont chacune doit notamment
être dotée d’une clé primaire.

La clé primaire d’une relation doit être composée d’un ensemble de colonnes de cette
relation (pouvant ou non être limité à une seule colonne) dont l’ensemble des valeurs
sera forcément unique pour toute ligne de la relation.

Les clés primaires sont automatiquement indexées par les systèmes de gestion de
bases de données, ce qui permet de considérablement accélérer les recherches quand
on veux accéder à des données en connaissant les valeurs de leurs clés.

Enfin, ces clés primaires peuvent avoir vocation à être reprises sous forme de clés
étrangères dans d’autres tables associées.

2. Clés naturelles et clés de substitution

On appelle « clé naturelle » une clé constituée de colonnes naturellement présentes
dans la relation, par opposition à des colonnes qui lui auraient été rajoutées pour des
raisons purement techniques.

Des colonnes peuvent effectivement être ajoutées à une relation, précisément pour
servir de clé. On parle alors de « clé de substitution » (suroggate key en anglais).

Quoi qu’il en soit, dans une base de données correctement constituée, toutes les
relations (tables) devraient avoir chacune une ou plusieurs clés naturelles
candidates, parmi lesquelles on pourrait choisir une clé primaire naturelle. Si on ne
parvient pas à en identifier au moins une par relation, c’est qu’il y a un défaut dans
l’analyse du modèle de données et que la copie est à revoir.

Une fois que l’on s’est assuré qu’il y a bien au moins une clé naturelle candidate par
relation :

On peut déclarer une contrainte d’unicité sur chacune de ces clés candidates.

λ

1.

1. Une petite précision pour certain·es lecteur·ices qui pourraient confondre les termes
« relation » et « association ». Certain·es appellent parfois « relation » le fait qu’une table
soit reliée à une autre (donc « mise en relation », pourrait on dire) par le biais d’une clé
étrangère ou d’une table de jointure. Mais dans le vocabulaire consacré, issu le l’algèbre
relationnel, chaque table, prise indépendamment des autres, constitue à elle seule une
relation, en ce qu’elle met en relation les colonnes qui la composent. Pour parler des liens
entre tables, on pourra plutôt utiliser les termes « association » ou « jointure ».

1

On peut également vouloir déclarer des index sur les colonnes correspondant à ces
clés candidates (un index sur l’ensemble des colonnes consituant chaque clé
candidate).

On peut se poser la question de préférer ou non une clé de substitution à une clé
naturelle.

Cette question trouve généralement vite une réponse : à moins de se trouver dans un
environnement technique très contraint en quantité de mémoire disponible, dans lequel
l’économie de chaque colonne serait bonne à prendre, on a tout lieu de préférer une clé
de substitution.

La principale raison à ceci est qu’une clé de substitution est systématiquement
composée d’une seule colonne, alors qu’une clé naturelle sera souvent composée de
plusieurs colonnes. Or, la clé primaire d’une relation peut avoir vocation à être reprise
sous forme de clés étrangères dans d’autres relations.

À ce titre, il est plus simple de ne reprendre qu’une colonne plutôt que plusieurs. Et cela
rendra les jointures moins fastidieuses quand il s’agira d’écrire des requêtes pour
interroger la base de données.

3. Entier ou UUID ?

Une fois qu’on a déterminé qu’on allait doter chaque table de notre base de données
d’une clé primaire de substitution, on pourra se trouver face à un choix : de quel type de
données devra être la colonne constituant cette clé ? La plupart des systèmes de
gestion de bases de données modernes proposent :

Un type nombre entier auto-incrémenté ou, à défaut, un mécanisme de
séquence pour générer des nombres entiers croissants.

Un type UUID.

Les UUID sont intéressants en ce que se sont des identifiants universels, dont chacun
sera unique non seulement dans la base de données, mais en fait également dans tous
l’Univers. En comparaison, les nombres entiers auto-incrémentés ne sont uniques que
pour une table donnée dans une base donnée.

Seulement, les UUID ne sont pas monotones : il ne sont pas soit croissants, soit
décroissants, quand on les génère les uns à la suite des autres. Cette absence de
monotonie présente un inconvénient majeur vis à vis des algorithmes utilisés pour
l’indexation des données : elles les rend beaucoup moins performants que quand ils
opèrent sur des données monotones.

À l’inverse, des nombres entiers auto-incrémentés ou issus de séquences sont, par
construction, forcément croissants (donc monotones) dans le temps. Cela les rends
idéaux pour l’indexation des données.

Pour cette raison, on préférera donc utiliser des nombres entiers auto-incrémentés ou
issus de séquences pour constituer nos clés primaires.

2.

•

•

2

Toutefois, rien n’empêche d’également doter la table d’une colonne de type UUID qui
sera, comme les clés naturelles candidates, dotée d’une contrainte d’unicité et
éventuellement d’un index.

Cette colonne pourra s’avérer utile, notamment, dans le cas où il sera demandé
d’effectuer des copies de données d’une base à une autre (par exemple d’un
environnement de production vers un environnement de développement, pour y
reproduire des dysfonctionnements constatés). Les mêmes données auront des clés
primaires (incrémentées à partir de compteurs distincts) différentes d’une base à
l’autre, mais toujours les mêmes UUID.

En outre, ces UUID pourront éventuellement servir d’identifiants publics aux données.

Il existe un débat sur le fait qu’il est acceptable ou non, voire de bonne pratique ou non,
de faire apparaître un identifiant technique plutôt que naturel dans l’URI d’une
ressource servie par un service web ou même, plus discrètement, sous forme de
propriété id dans des échanges en JSON (par exemple).

Si on opte pour ce qui est une forme de publication de ces identifiants techniques, ce ne
devrait jamais être les entiers incrémentés qui constituent les clés primaires des
données en base. Ces entiers et le fait qu’ils soient incrémentés relèvent de détails
d’implémentation qui devraient demeurer privés.

Des UUID sont de meilleurs (ou moins mauvais2) choix en la matière.

4. Mes préconisations résumées

Voici donc comment je procède pour des bases de données relationnelles sur lesquelles
j’ai la main. Pour chaque table :

Identification des clés naturelles candidates.

S’il n’y en a pas, le modèle de données devra retourner à la case analyse, car il y a
quelque chose qui cloche.

Pour chacune des clés naturelles candidates identifiées, mise en place d’une
contrainte d’unicité et d’un index.

Ajout d’une colonne de type entier auto-incrémenté / numéro de séquence.

Déclaration de la clé primaire de la relation comme étant constituée de cette seule
colonne. À ce titre, c’est cette colonne qui sera éventuellement référencée comme
clé étrangère dans d’autres relations de la base de données.

Cette colonne peut éventuellement être nommée id. Les colonnes y faisant
références sous forme de clés étrangères dans d’autres tables seront alors
nommées de la forme xxx_id où xxx décrit le rôle de la table référencée dans
l’association qu’elle a avec la table dans laquelle figure la clé étrangère.

1.

2.

3.

2. L’auteur de ces mots est plutôt d’avis de bannir les identifiants techniques des routes
des API web, pour y faire plutôt figurer des identifiants naturels ayant du sens métier.
L’URL des ressources adressées n’en sont ainsi que plus intelligibles. Pour ce qui est de
propriétés id dans des structures JSON, il est plus partagé.

3

Ajout d’une colonne de type UUID.

Cette colonne servira d’identifiant unique au delà de la base de données. Il
permettra d’identifier les lignes et leurs correspondances lors d’opérations
multibases.

Cette colonne peut éventuellement être nommée public_id.

4.

4

	Les clés dans les bases de données relationnelles
	Les bases théoriques
	Clés naturelles et clés de substitution
	Entier ou UUID ?
	Mes préconisations résumées

