Les promesses non tenues de
I'industrie du logiciel

Au moment ou je commence cet article, j’ai 27 ans de carriere derriere moi dans le
métier de I'ingénierie logicielle, de 1998 a 2025.

Pendant ce gros quart de siecle, j'ai vu passer pas mal de technologies qui étaient
censées révolutionner la profession ou étre I'avenir incontournable de tout le paysage
technologique.

Cet article est un recensement de ces technologies qui n'ont pas tenu les promesses qui
étaient faites par leurs promoteur-ices au moment ou elles sont sorties des laboratoires
des universités ou des services de recherche et développement des entreprises. |l est
appelé a s’enrichir au fur et a mesure que des souvenirs me reviendront concernant de
telles technologies.

1. La programmation orientée objet

Au moment ou je tape ces mots, les langages orientés objet sont (encore) largement
dominants dans l'industrie du logiciel. Entre 1994, année d’apparition du langage Java
et aujourd’hui, en passant par 2002, année d’'apparition du langage C#, I’adoption de la
programmation orientée objet a indiscutablement été tres large.

Mais, durant ce laps de temps, de nombreuses promesses ont été faites, qui n’ont pas
été tenues.

1.1. Léradication des bugs

La principale d’entre elles a été la suivante : le nouveau niveau d’abstraction que
permettait la programmation orientée objet, en comparaison de Ia
programmation procédurale qu’elle était appelée a supplanter, devait
permettre de créer plus simplement des logiciels plus riches et moins bugués.

La programmation orientée objet a effectivement largement supplanté Ia
programmation procédurale et on s’en est effectivement servi pour écrire des logiciels
de plus en plus riches et de plus en plus complexes (ce que I'on doit probablement au
moins autant aux gains de puissance des ordinateurs commercialisés sur la méme
période qu’a I'avenement de la programmation orientée objet).

Mais pour ce qui est d’avoir moins de bugs, pardon. Aujourd’hui plus que jamais,
I’industrie du logiciel croule sous les bugs.

Le code que les développeur-euses écrivent est rarement juste du premier coup. Des
sommes d’argent tres conséguentes sont investies dans des tests et des contrbles de
gualité pour détecter les bugs et les corriger avant que le logiciel atterrisse entre les
mains des utilisateur-ices. Et malgré cela, il arrive encore que ces utilisateur-ices aient a
subir les affres de bugs qui seront passés au travers de ces controles.



En fait, I’élévation du niveau d’abstraction apporté par la programmation orientée objet
a peut étre effectivement permis de s’attaquer a des problemes plus complexes, avec
des logiciels plus ambitieux Dans quelle mesure ? Cela peut étre sujet a débat.

Mais, en revanche, il n'a quasiment rien apporté en matiére de limitation des bugs.

La raison en est simple : le supplément d’abstraction apporté par la programmation
orientée objet par rapport a la programmation procédurale concerne surtout
I’organisation (en classes) des données traitées, mais tres peu l'organisation des
traitements eux-mémes. Le contenu et le fonctionnement d’'une méthode en
programmation orientée objet (par exemple écrite en C++, en Java ou en C#)
ressemble a s’y méprendre au contenu et au fonctionnement d'une procédure en
programmation procédurale (par exemple écrite en C ou en Pascal).

En dehors de quelques notions de portées de variables et la possibilité de surcharger
des méthodes (dont on peut se demander quel est en fin de compte le rapport
bénéfice / risque entre la puissance d’expression qu’elle apporte et la confusion qu’elle
peut induire), les traitements sont exprimés avec les mémes structures algorithmiques
en programmation orientée objet qu’ils I’étaient dans les langages procéduraux. On
utilise toujours les mémes if, while, for...

On a toujours des catégories de bugs qui sont des classiques depuis des décennies :
déréférencements de pointeurs non valorisés (NullPointerException en Java), indexes
hors bornes (IndexOutOfBoundsException)... et surtout effets de bords mal
maitrisés.

Nous manguons de statistiques sur le sujet, mais je ne serais pas étonné que la majorité
des bugs que I'on rencontre lors du développement d’un logiciel appartiennent a cette
catégorie.

Or, loin de chercher a contenir les effets de bord (comme le fait la programmation
fonctionnelle pure), la programmation orientée objet repose fondamentalement sur
ceux-ci. Par exemple, la notion méme de mutateur d’attribut, qui est un fondement de
la programmation orientée objet, n’est rien autre qu’une mise en ceuvre d’effets de
bord.

Si on voulait éradiquer, ou au moins contenir les bugs, alors peut étre que la
programmation orientée objet n’était pas le paradigme de programmation sur lequel
miser.

1.2. Des apports mitigés en matiere de puissance
d’expression

La programmation orientée objet propose, par rapport a la programmation procédurale,
des nouveautés qui sont indiscutablement des apports en matiere de niveau
d’abstraction et de puissance d’expression. Les classes d’'objets, leurs constructeurs,
leurs mécanismes d’héritage, la notion d’encapsulation des données... sont autant
d’'exemples de ces apports.

Mais tous ces apports théoriques rencontres parfois des limites pratiques, qui peuvent
s'avérer frustrantes pour les développeur-euses (d'autant plus qu’ils auront montré de
I’enthousiasme pour ce que la théorie devait leur permettre).


file:///home/yom/inglog/dev/www-devlog/.tmp/paradigmes-programmation
file:///home/yom/inglog/dev/www-devlog/.tmp/histoire-tragique-domination-langages-imperatifs

Un petit exemple personnel pour illustrer ce sentiment : quand cela me parait approprié,
je considere de bonne pratique de chercher a créer des classes d’objets non mutables
ou avec au moins certains de leurs attributs qui soient non mutables. Il s’agit d’objets
dont les valeurs des attributs sont définies une fois pour toutes a la création et ne
peuvent ensuite pas étre changées.

Il existe des techniques qui permettent de faire cela, au moins dans certains langages.
Par exemple en Java, il suffit de déclarer private final tous les attributs que I'on veut
rendre non mutables, de les initialiser dans un constructeur qui pendra autant
d’arguments, de rendre privé le constructeur par défaut sans argument et enfin de
doter chacun des attribut concerné d’'un accesseur (getter), mais surtout pas d’un
mutateur (setter).

Mais les frameworks dominants de la sceéne Java nécessitent que certaines des ces
classes soient sérialisables. Pour cela, elles doivent implémenter I'interface
Serializable, ce qui est anodin, mais également... étre dotées d'un constructeur par
défaut sans argument public et d’'un mutateur pour chacun de leurs attributs. Du coup,
a I’eau la bonne pratique.

Ah, les frameworks...

Notons, a titre de second exemple de limitation par rapport au pouvoir d'expression
théorique que devait apporter la programmation orientée objet, que certains de ces
frameworks nécessitent la mise en oceuvre d’objets sans état (stateless). Pour un
paradigme de programmation dont le coeur battant est la gestion de mutation d’états,
ca se pose la. D’ailleurs, cette notion de stateless n’était qu’'une facon pudique d’éviter
a parler de retour a une approche procédurale, en la maquillant avec des idiomes
orientés objet.

De frameworks, il va en étre question dans la section suivante.

1.3. La valse des frameworks

Entre 1999 et 2014, les frameworks suivants, tous considérés comme majeurs dans le
monde Java, se sont succédés :

« 1999 : EJB

» 2001 : EJB2

* 2002 : Spring

« 2006 : EJB3

* 2014 : Spring Boot

On voit que plusieurs de ces frameworks sont des itérations successives de la méme
approche. Ainsi a EJB (Enterprise Java Beans) a succédé EJB2, puis EJB3, avec a chaque
fois une nouvelle « révolution » du concept. Et a chaque fois avec I'espoir de tenir les
promesses techniques que l'itération précédente n’était pas parvenue a tenir, en dépit
(ou plus probalement a cause) d’'une complexité délirante.

Las de voir les versions successives d'EJB échouer, d’autres équipes on démarrer le
projet Spring, lui aussi bien assez complexe a mettre en ceuvre, jusqu’a ce que Spring



Boot vienne le simplifier substanciellement (non pas que ce soit pour autant devenu
complement trivial).

La succession de ces différents frameworks est la marque du fait que la programmation
orientée objet n’a pas réussi a tenir ces promesses initiales. Comme elle n'y arrivait a
elle seule, on I'a enrichie d’'une approche framework, puis d’'une autre quand la
premiére a a son tour échoué, puis d’encore une autre... dans une sorte de fuite en
avant incroyablement codteuse.

Car il est a noter que chacun de ces frameworks était annoncé, a sa sortie, comme le
framework ultime, sur lequel on pouvait miser de facon pérenne pour refonder
I'intégralité de son systeme d’'information. Et a chaque fois, des entreprises s’y sont
laissées prendre, investissant des sommes considérables dans des développements qui
allaient devenir obsoletes parfois seulement quelques années plus tard. Il est méme
arrivé que certains de ces développements aient été obsolétes avant d’étre terminés.

J'ai pris ici 'exemple du monde Java parce que c’est celui que j’'ai le mieux pu suivre, a
titre professionnel, durant ces décennies. Mais je ne doute pas que les
développeur-euses ayant évolué dans d’autres univers techniques a la mode orientée
objet ou eu a connaitre les mémes déconvenues.

2. XML (et le web sémantique)

A la fin des années 1990 est apparu le métalangage XML. Métalangage car, plutét qu’un
langage, c’est une norme qui permet de créer des langages.

Il s’agit d’'un métalangage de marquage structurel de données, inspiré du plus ancien
SGML, le dépoussiérant et le modifiant de sorte qu’il soit plus aisé a parser par des
programmes.

XML était porteur des énormes ambitions du W3C, le World Wide Web Consortium,
organisme normalisateur du web. Il devait devenir la base des langages d’échanges de
données sur tout Internet.

A commencer par les pages web. Le langage HTML, basé sur SGML, a lui méme été
passé a la moulinette XML pour donner le XHTML, qui était la forme de HTML préconisée
dans les années 2000. Les auteur-ices de pages web étaient méme alors incité-es a faire
figurer sur leurs sites des logos de certification assurant que le code de leurs pages
étaient bien conforme a la norme XHTML.

La norme XML s’accompagne de plusieurs spécifications associées :
XML Schema
Un langage basé sur XML pour décrire et normaliser des langages basés sur XML.

XML Schema était le remplacant désigné du format DTD, qui remplissait la méme
fonction pour tous les formats dérivés du SGML.

XSL

Une norme composée de deux langages basés sur XML :



XSLT

Un langage de « feuilles de styles » permettant de définir des regles de
transformation pour passer des documents d'un format XML vers un autre
format XML ou éventuellement vers un format texte.

Ces transformations requierent la mise en ceuvre d’un programme processeur
XSLT.

Ces feuiles de styles XSLT devaient notamment permettre la conversion de
documents XML en pages XHTML pour des publications sur Internet.

XSL:FO

Un langage permettant de décrire des documents paginés et mis en forme en
vue de conversions dans des formats appropriés pour des impressions,
comme le PDF ou le Postscript.

La aussi, cette conversion nécessite la mise en ceuvre d’'un programme
processeur XSL:FO.

On imaginait ainsi que des documents XML pourraient étre convertis, via des
transformations XSLT, en document XSL:FO qui seraient ensuite convertis en
documents PDF.

Tout ceci était mis en place pour préparer un avenir radieux dans lequel toutes les
données électroniques seraient stockées dans des formats XML, selon une normalisation
de format elle-méme définie en XML (Schema) et qui pourraient étre transformés, en
fonctions des besoins, en d’autres formats XML plus adaptés, selons des regles de
transformation elles-mémes définie en XML (via la norme XSL). Bref, il y aurait du XML
partout et a tous les niveaux.

A terme, on nous promettait méme le web semantique. Au lieu de rédiger directement
des pages (X)HTML, les créateurs de sites web devraient conserver leurs données dans
des fichiers XML constitués de balises les plus adaptées possibles a la sémantique
originelle de ces données. I|déalement, ces formats XML sémantiques devaient
évidemment étre normalisés en XML Schema.

Ces documents XML sémantiques devaient ensuite étre associés a des feuilles des
styles XSLT contenant des regles de transformation permettant de les transformer en
pages XHTML. Ces transformations devaient étre mise en ceuvre par des processeurs
XSLT embarqués dans les navigateurs web (au méme titre que les interpréteurs
Javascript ou CSS qu’ils embarquent déja).

Comme chacun-e peut le constater aujourd’hui, ce web sémantique n’est pas advenu.

Le format XML implique I'utilisation de balises ouvrantes et fermantes qui peuvent étre
jugées comme relativement encombrantes. Ceci a poussé certain-es acteur-ices du
secteur a concevoir des alternatives plutét que de se ralier a la grande banniere
unificatrice du XML.

Par exemple, la norme XML Schema était notoirement complexe et fastidieuse a mettre
en ceuvre, au point de se faire parfois qualifier « d’usine a gaz ». Aussi est rapidement
apparue, des 2003, une norme concurrente appelée Relax NG.



Celle-ci n'était pas elle méme basée sur XML et permettait de définir des formats XML
beaucoup simplement et concisement que le format XML Schema. Dans les grandes
lignes, Relax NG permettait de faire 80% de ce que permettait XML Schema (ce qui était
généralement bien suffisant) pour seulement 20% de sa complexité.

Les équipes derriere certains formats XML de renom de I'époque, comme Docbook,
OpenDocument ou encore Epub, ont décidé d'opter pour Relax NG plutot que pour XML
Schema. Cela ouvrait une premiere breche dans l'avenir tout en XML qu’on nous
promettait.

Puis le clou fat enfoncé par le remplacement progressif de XML par JSON comme format
d’échange utilisé par les applications web. Ces échanges reposent sur la technologie
gue I'on a appelée AJAX, pour Asynchronous Javascript And Xml. Le XML y était donc
bien orpginellement présent.

Mais il a été progressivement remplacé par JSON, a partir de 2001, un format qui
présentait I'avantage d’étre beaucoup plus facilement manipulable en Javascript que le
XML. On continue, par habitude, de parler d’AJAX plutot que d’AJA) (pour Asynchronous
Javascript And Json), mais c’est bien JSON qui domine aujourd’hui largement les formats
d’échanges entre applications et services web.

Non content de bouter XML hors des échanges entre services web, JSON lui a également
taillé des croupieres dans d’autres domaines dans lesquels XML s’était installé, comme
celui des formats de fichiers de configuration.

Et aujourd’hui, c’est le format YAML qui tend a tailler des croupiéres a JSON dans ces
mémes domaines. Mais JSON demeure en revanche le maitre des échanges entre
services web.

L'ultime affront envers XML a sans doute eu lieu en 2009, quand le W3C lui-méme s’est
résolu, dans la guerre de succession a HTML4, a cesser de pousser la norme XHTML 2.0
face a la nouvelle norme HTMLS5, toujours basée sur SGML. Et c’est bien la norme HTML5
qui est aujourd’hui au centre des applications web modernes, reléguant la norme XHTML
au rang de péripétie de I'Histoire de lI'informatique.

Sur le plan des formats de documents eux-mémes, la complexité de XML a fini par
lasser. Dans le domaine de la rédaction de documentations technigues (dans le domaine
de I'informatique), des formats précédemment basé sur XML (comme Docbook) tendent
désormais a étre remplacés par le format Markdown, adopté pour le seul fait qu’il est
radicalement plus simple.

XML n’a totalement disparu, loin de la. On le retrouve dans de nombreux formats qui ont
été mis au point entre la fin des années 1990 et le courant des années 2000, voire 2010
et qui ont perduré jusqu’a aujourd’hui, comme le format OpenDocument utilisé par la
suite LibreOffice.

Mais il est beaucoup plus rarement adopté sur des projets initiés plus récemment. Au
lieu d’atteindre la position ultra dominante a laquelle il était promis, il fait aujourd’hui
figure de technologie un peu ringuarde.



	Les promesses non tenues de l’industrie du logiciel
	La programmation orientée objet
	L’éradication des bugs
	Des apports mitigés en matière de puissance d’expression
	La valse des frameworks

	XML (et le web sémantique)

